TENSORFLOW
AMPERE® OPTIMIZED
FRAMEWORK

Documentation
v.1.11.0

AMPERE COMPUTING

AMPERE.

Table of Contents

RELEASE NOTES
OVERVIEW..........cereerereerenerenne .- .- cerrennnssssnnsne
TENSORFLOW FRAMEWORK..... cesrsssssnsnnnsnnne . ceeresssnnsnnssnnes
AV LT oY a1 @0 4o o X= 11 « 111 4 R
PYTHON .- cerrernsnnnnnnsnnne
CONFIGURATIONS . cesesssssnsenssssssesssssnnnns
QUICKSTARTccooeerenrncnressancrcnnes
LauNChing DOCKEr CONTAINETuviiiiiiciiiiee ettt ettt e e ettt e e e e e et e e e e e e sbaeeeeesestaaeaeaeasssaaseaesansbaseaesannseseaaeaanes
RUNNING EXGMPIES 1eiiiiieiiiiee ettt ettt s e e sttt e s st e e satae e e st beeesabaeesabeeesasbeeensbaeesasaeesssbeeenasaeesasaeesnsseesnnsaeesseens
AMPERE OPTIMIZED FRAMEWORKS PROGRAMMING GUIDE......... ceesessssnssnsssssnnns
TensorFlow Eager Execution and Graph EXECULIONeiccieeiiiie et ctee ettt s e e ire e e etr e e s nae e e sar e e esnsaeesanneas
B I o 1= o [TV SRS

e T={ 010] 0 a1 o T4 I o T PP PP P TP PPN

RELEASE NOTES
V1.11.0:
e Tensorflow upgraded to 2.15
e Libampere-aio updated to 0.12.0
o Support mixed precision mode for FC, MatMul and EmbeddingBag ops
V1.10.0:
e Add sigmoid, sign and fill ops
e libampere-aio updated to 0.11.0 with enhanced performance.
o Support of implicit FP16 + int8 mixed precision. Speed up large models like DLRM.
V1.9.0:
e libampere-aio updated to 0.10.0 with enhanced performance.
e Add min and max ops
V1.8.0:
e libmpere-aio updated to 0.9.0
Bug fixes and performance enhancements
V1.7.0:
¢ Updated to use libmpere-aio to 0.8.0
» Bug fixes and performance enhancements
V1.6.0:
¢ Tensorflow framework updated to 2.11.0 from 2.9.2
¢ Updated to use libmpere-aio to 0.7.0
¢ Bug fixes and performance enhancements
V1.5.0:
¢ Updated to use libmpere-aio to 0.6.0
¢ Bug fixes and performance enhancements
V1.4.0:
¢ Tensorflow framework updated to 2.9.2 from 2.7.1
e Updated to use libmpere-aio t0 0.5.1
o New Ops: GatherND, Slice

e More optimal partitioning of graph for AlO acceleration

e Support implicit FP32 to FP16 conversion. Can speed up performance up to 2X by runtime
automatic conversion from FP32 to FP16. Environment flags are provided to perform
conversion for selective ops. (Please refer to Programming Tips for more details)

¢ Support of BFloat16 added (depends on HW support)
¢ Bug Fixes: Support of multiple output fused batch norm, Split Op fix,
V1.3.1:
o Updated to use libampere-aio to 0.4.0
e Bug Fixes
V1.2.0:
¢ TensorFlow framework updated to 2.7.1 from 2.7.0
¢ Updated to use libampere-aio 0.3.0
o Misc models speed up like BERT and UNET
o New Ops: Expand dims
o If TFintra_op is 0, set Ampere Optimized TensorFlow num threads to 1
V1.1.0
e TensorFlow framework is updated to 2.7.0 from 2.4.1.
¢ Updated to use libampere-aio 0.2.1

¢ AIO_NUM_THREADS no longer needed to set Ampere Optimized TensorFlow threads, inherits
TensorFlow intra-op thread count.

OVERVIEW

Ampere Optimized TensorFlow inference acceleration engine is fully integrated with the
TensorFlow framework. TensorFlow models and software written with the TensorFlow API can
run as-is, without modifications.

TENSORFLOW FRAMEWORK

Python is installed with Ampere Optimized TensorFlow and all dependencies. No additional
installation steps are needed.

Versions Compatibility

This release is based on TensorFlow 2.11.0. Refer to TensorFlow version compatibility
documentation, found at https://www.tensorflow.org/guide/versions, to check the
compatibility of models built with older versions of TensorFlow.

PYTHON

TensorFlow 2.11.0 is built for Python 3.10, supporting Ubuntu 22.04. Regarding other Python
versions, contact your Ampere sales representative. If you are using the software through a
third party, contact their customer support team for help. You can also contact the Ampere Al
team at

ai-support@amperecomputing.com.

CONFIGURATIONS

Ampere Optimized TensorFlow inference engine can be configured by a set of environment
variables for performance and debugging purposes. They can be set in the command line when
running TensorFlow models (e.g., AIO_NUM_THREADS=16 python run_tf_resnet50.py) or set in
the shell initialization script.

AIO_PROCESS_MODE

This variable controls if Ampere Optimized TensorFlow inference engine is used in running the
TensorFlow model.

e 0:disabled
e 1:enabled (Default)

AlO_CPU_BIND

Enables core binding. If enabled, each Ampere Optimized TensorFlow thread will bind itself to a
single core.

e 0: Core binding disabled
e 1: Core binding enabled (Default)

https://www.tensorflow.org/guide/versions
mailto:ai-support@amperecomputing.com

AIO_MEM_BIND

Bind memory to NUMA (Non-uniform memory access) node 0. For optimal performance,
numactl (https://linux.die.net/man/8/numactl) is preferred. numactl bind will affect both the
Tensorflow framework and the optimized framework buffers, while the optimized framework is
unable to affect buffers allocated by the TensorFlow framework.

e 0: Membind disabled
e 1: Membind to node 0 (Default)

AIO_NUMA_CPUS
Select cores that Ampere Optimized TensorFlow should bind to (if CPU_BIND is enabled).
e Not set: use the first N cores of the machine, excluding hyper-threaded machines (Default)

o Set: try to use N first cores from the list of cores for N threads. The list is in space-separated,
0-based number format. For example, selecting cores 0 to 1: AIO_NUMA_CPUS="0 1"

AlO_DEBUG_MODE

Control verbosity of debug messages.

e 0: No messages

e 1:Errorsonly

e 2:Basicinformation, warnings, and errors (Default)
e 3: Most messages

e 4: All messages

QUICKSTART

The following instructions run on Altra/Altra Max Linux machines installed with Docker. When
you are already using a virtual machine pre-installed with the version of Ampere Optimized
Tensorflow (e.g. on a cloud service provider) that you need, you can skip the following step of
launching Docker container.

Note: This docker image is developed for benchmarking and evaluation purpose, not for
deployment into production environment. We will provide required Debian, RPM and Python
packages as needed for your production deployment.

Launching Docker Container

Pulling Docker Image from Docker Hub repository.

S docker pull amperecomputingai/tensorflow:1.11.0

Launching Docker Container

S docker run --privileged=true --rm --name tf-aio --network host -it amperecomputingai/tensorflow:1.11.0

https://linux.die.net/man/8/numactl

Warning: This user has, by default, root privileges with Docker. Please limit permission according to your security
policy.

Running Examples

You can try Ampere Optimized TensorFlow by either running the Jupyter Notebook examples or
Python scripts on the CLI level.

To run the Jupyter Notebook QuickStart examples follow the instructions below:

Set AIO_NUM_THREADS to the requested value first.

S export AIO_NUM_THREADS=16; export OMP_NUM_THREADS=16
S cd /workspace/aio-examples/

S bash download_models.sh

S bash start_notebook.sh

If you run the Jupyter Notebook QuickStart on a cloud instance, make sure your machine has
port 8080 open and on your local device run:

S ssh -N -L 8080:localhost:8080 -1 <ssh_key> your_user@xxX.XXX.XXX.XXX

Use a browser to point to the URL printed out by the Jupyter Notebook launcher.

You will find the Jupyter Notebook examples (examples.ipynb) under the /classification and
/object detection folders.

The examples run through several inference models, visualize results they produce
and present the performance numbers.

To use CLI-level scripts:

Set AIO_NUM_THREADS to the requested value first.

$ export AI0O_NUM_THREADS=16; export OMP_NUM_THREADS=16
S cd /workspace/aio-examples/

S bash download_models.sh

Go to the directory of choice, e.g.

S cd classification/resnet_50_v15

Evaluate the model.

S python3 run.py -m resnet_50_v15_tf fp32.pb -p fp32
S python3 run.py -m resnet_50_v15_tflite_int8.tflite -p int8

AMPERE OPTIMIZED FRAMEWORKS PROGRAMMING GUIDE

Ampere Optimized TensorFlow is powered by Ampere® Al backend which accelerates Deep
Learning (DL) operations on the Ampere® Altra family of processors. Ampere Optimized
Frameworks accelerate DL operations through model optimization, highly vectorized compute
kernels and multi-thread operations that are automatically tuned to deliver the best latency
and throughput on Ampere Altra processors. It delivers 2-5x gains over alternative backend
solutions.

Machine Learning

Computer Natural Language Recommender
Vision Processing Systems

Customer Applications

1/ () PyTorch 20w DN | standard Frameworks

o N —

Model Optimization

L__ Ampere Optimized
Hardware Instruction-5et Mapping Frameworks

AN

AMPERE. AMPERE.
ra MAX™ Ampere One®

AMPERE.
Altra®

Supported Inference Ops

Ampere Optimized Tensorflow accelerates most common Tensorflow ops that are used in
various types of models. Here is a list of accelerated ops and formats (Note: non-accelerated
ops will still run without a problem, at the original framework operator speed):

FP32 FP16 Implicit FP16 | Remarks
(Explicitly | (Automatic
defined in | on-the-fly

model) conversion)

Conv2D Y

Conv3D NDHWC only

_FusedConv2D

FusedBatchNorm

FusedBatchNormV2

FusedBatchNormV3

<|=<|=<|=<|=<|=<|=<

Y
N
Y
N NHWC only
N
N
Y

MaxPool NHWC only

2D Max Pooling only

<
<

AvgPool NHWC only

2D Average Pooling only

MatMul transpose_a == 0 only

_FusedMatMul transpose_a == 0 only

BatchMatMul adj_x==0only

<|=<|=<|=<

BatchMatMulV2 adj_x==0only

Mean

Mul

Add

AddVv2

BiasAdd

Sub

Pow

Div

RealDiv

Tanh

Sgrt

Square

Rsqrt

SquaredDifference

Relu

Relu6

LeakyRelu

Softmax

<|=<|=<|=<|=<|=<|=<|=<|=<|=<|<|<|<|<|=<|=<|=<|<|<|<|=<|=<]|=<
<|=<|=<|=<|=<|=<|=<|=<|=<|=<|<|<|=<|<|=<|<|=<|<|<|<|=<|<]|=<

AddN

Pad Y Y

Concat Y Y axis_constant only

ConcatV2 Y Y axis constant only

Gather Y N indices int32 only
axis constant only

GatherV2 Y N indices int32 only
axis constant only
batch_dim =0 only

GatherND Y N Indices int32 and int64
supported
Batch_dim =0 only

StridedSlice Y N index int32 only
begin_mask and
end_mask only

Slice Y Y

Squeeze Y Y

DepthwiseConv2dNative |Y Y

Reshape Y Y

ExpandDims Y Y

Transpose Y Y perm constant only

Erf Y Y

SplitV Y Y axis constant only

Conv3dBackproplnputV2 | Y N NDHWC only

Maximum Y Y

Minimum Y Y

Sigmoid Y Y

Sign Y Y

Fill Y Y

Ampere Al continues to expand the coverage of TensorFlow ops. If your model has any op that
is not listed in the table or custom ops that need acceleration, please contact
ai-support@amperecomputing.com.

Ampere Optimized TensorFlow also supports acceleration of TensorFlow Lite int8 models.
Please contact us for information about TensorFlow Lite model support.

TensorFlow Eager Execution and Graph Execution

While TensorFlow Eager Execution provides excellent model building, programming, and
debugging experience, it is slower than graph execution. So, graph execution is typically used
for inference deployment. In current version Ampere Optimized TensorFlow only accelerates
Graph Execution mode.

mailto:ai-support@amperecomputing.com

After building your model in Eager mode, you can use tf.function() to compile you eager
function into callable graph. More details can be found in TensorFlow documentation at:
https://www.tensorflow.org/api_docs/python/tf/function.

Ampere model library also provides some sample code in how to run eager model efficiently,
access AML at:
https://github.com/AmpereComputingAl/ampere_model_library/blob/main/natural_language
_processing/extractive_question_answering/electra_large/run.py.

Threading

Ampere Optimized TensorFlow controls the number of intra_op threads of Ampere Optimized
Tensofrlow with tensorflow.config.threading.set_intra_op_parallelism_threads() (Or in the case
of TF v1 session, set config.intra_op_parallelism_threads). This controls both the number of
threads used for ops delegated to Ampere Optimized Tensorflow as well as the ops running on
default CPU backend.

Some default CPU backend ops (non-AlO) also need to set OMP_NUM_THREADS environment
variable to control the intra_op threads.

To correctly switch between Ampere Optimized Tensorflow and Tensorflow thread pools we
recommend setting following environmental variables to ensure best performance:

OMP_WAIT_POLICY=ACTIVE
GOMP_SPINCOUNT=10000
KMP_BLOCKTIME=1

Programming Tips

In the first inference pass, Ampere Optimized Tensorflow performs runtime compilation of TF
graphs. So, the latency of the first pass is expected to be longer. Subsequent passes will be
accelerated.

Frozen TF models will provide slightly better performance. Please see TF documentations in
how to generate frozen graphs.

Ampere Optimized TensorFlow provides much better latency scaling as core count increase,
comparing to other platforms. You can easily try the optimal number of cores with the above
intra_op_parallelism_threads configurations that can give you the best performance/S, while
meeting your latency requirements.

(Experimental): Ampere Optimized TensorFlow backend now provides automatic FP16 operator
conversion that can boost the performance of your FP32 model on-the-fly. It automatically
performs FP16 conversion and computation for certain whitelisted operators through regular
expression. To take advantage of that, you can set environment variable.

Sexport AIO_IMPLICIT_FP16_TRANSFORM_FILTER=".*"
This activates automatic FP16 conversion for all supported operators. It is estimated that this

has very little impact to accuracy of common models. Please contact us if you have any
guestion about this feature.

https://www.tensorflow.org/api_docs/python/tf/function
https://github.com/AmpereComputingAI/ampere_model_library/blob/main/natural_language_processing/extractive_question_answering/electra_large/run.py
https://github.com/AmpereComputingAI/ampere_model_library/blob/main/natural_language_processing/extractive_question_answering/electra_large/run.py

If any issues occur, Ampere Al team is ready to help. Typically, the first step is to get more
debug logs and send it to ai-support@amperecomputing.com. Please set environment variable
AlO_DEBUG_MODE=5 to capture low level logs. We can also provide more in-depth profiling of

your model to help enhancing performance to meet your needs.

10

mailto:ai-support@amperecomputing.com

Ampere Computing® / 4655 Great America Parkway, Suite 601 / Santa Clara, CA 95054 /
www.amperecomputing.com

Ampere Computing, the Ampere Computing logo, Altra, and eMAG are registered trademarks of Ampere Computing.

Arm is a registered trademark of Arm Holdings in the US and/or elsewhere. All other trademarks are the property of their respective owners.
©2022 Ampere Computing. All rights reserved.

AMP 2019-0039

11

http://www.amperecomputing.com/

	RELEASE NOTES
	OVERVIEW
	TENSORFLOW FRAMEWORK
	Versions Compatibility

	PYTHON
	CONFIGURATIONS
	QUICKSTART
	Launching Docker Container
	Pulling Docker Image from Docker Hub repository.
	Launching Docker Container

	Running Examples

	AMPERE OPTIMIZED FRAMEWORKS PROGRAMMING GUIDE
	TensorFlow Eager Execution and Graph Execution
	Threading
	Programming Tips

