PYTORCH
AMPERE® OPTIMIZED
FRAMEWORK

Documentation
v1.11.0

AMPERE COMPUTING

AMPERE.

Table of Contents

RELEASE NOTES ... ot iiiiciiiitciireceteetecatecensassssassesassacessassssassesassassssassssassasassasassassssassasassnsnnnns 1
OVERVIEWciiiiiiiieiieeiieiieiieieieiesceetsestastastassessesssssssssassassassassesssssssssassassassassessssssassassassassasssnssns 4
PYTORCH FRAMEWORK....cuiiiiiciiiciiirtciiicciresesissecessecessassssassesensassssassssassesassassssassasassasassnsnnnns 4
V=Yg (o o I @eTa] o =11 o111 4V TSP 4
PYTHON ..cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiesiesrasrassrsssrsssrsssrsssesssssssssssrsssrsssrsssssssssssssssssssssssesssesssssssssssnsssasssas 4
CONFIGURATIONS ...cciciiiiciiiittiticetecetessecastecestassesastosastassssastesastossssassssastosassassssassssassassssassnsans 4
QUICKSTART ..euittuireiresruirairastrsssresiessiessssessssssssssesssesstosssasssasssasssasssasssasssssssassrassrasssasssasssnsssnsssnsss 5
[IET0 T g Yol o 11 oY= Do ol =Y g o]) - 1o 1T oSSR 6
2O oY o1 T Y= o= 0 0] o] L=y RS 6
AMPERE OPTIMIZED PYTORCH PROGRAMMING GUIDEccceiiuiiiiiinciiinceiiaieiniiecesiesesassncassosenss 7
OVEIVIBW ...ttt ettt ettt ettt e e e ettt e e e e e ub et e e e e s e aus et e e e e e unbe e e e e e s an b et e e e e e abe et e e e s e as s et eeeeaanbeeeeeeeaansseeeeeaannbeeeesaanraneeessannne 7
SUPPOIEEA INTEIENCE OS..eiiiiiiiieiie et eeete e e ite e ettt e e ettt eeebee e ettt e e estbeeeeasaeeasbeaaeasseesassaaeasbeseasseesasssaeassaeeansaeessssaeantesannnes 8
[V e T ol T I Yol TSP 12
B le el a0 4o o 11 LT[o =] -) ISP 12
TREEAAINEG .ottt b et et e bt e bt e s ae e s a bt e s bt e e ab e e sbeeea b e e bt e e b e e bt e e a b e e bt e eab e e sat e e bt e sheeebeeeneeebeenaneeane 13

e T=d Yo 0 a1 o T4 I o 1T TP PPNt 13

RELEASE NOTES

V1.11.0:

e PyTorch version upgraded to 2.2

e Enhance Whisper performance and compile time
e Enhance Unet model performance

e New layer ops support:

e Min, max, sum (reduce ops), Hardswish, Hardsigmoid, Conv1D, Conv3D (Transposed version too),
Depthwise type Convolution 2D, InstanceNorm3D, GroupNorm3D, improved indexing support,
permute and transpose on integer types, Index_add, scatter, expand, zeros, TopK, where (nonzero
overload)

e Linear merge optmization with opt out switch
e Libampere-aio updated to 0.12.0:
o Mixed precision mode - FC, Matmuls, EmbeddingBag
o LLM dedicated ops
o Native_fp16-int8 conversion merging
o GPTQ 4-bit support
o GPTQ 8-bit support

o New custom ROPE op added (see below for details)

V1.10.0:

e Fix AlO backend bug that breaks and BART model

e LLM models performance increase

e Optimized AIO fuser, which speed ups initialization stage of bigger models like Whisper
e libampere-aio updated to 0.11.0

o Support of implicit mixed precision (fp16 + int8). Major speed up of memory bound
models like DLRM. Please see following instructions in how to use it

o New custom RMSNorm op added (see below for details)
V1.9.0:
e libampere-aio updated to 0.10.0

o New upsampling2d_nearest kernel to speed up YOLO models

e Experimental support of int8 FC to speed up models like DLRM
e Improved support of in place operators by the Pytorch-aio
e Updated to PyTorch 2.1

e Framework now is setting AIO_SKIP_MASTER_THREAD=1 env var by default, no need to specify
it

V1.8.0:

e libampere-aio updated to 0.9.0
o Resolve an issue when input shape changes frequently
o Performance enhancements of some NLP models

V1.7.0:

e libampere-aio updated to 0.8.0

¢ Bug fixes and performance enhancements

¢ Improved memory management

e Improved model compilation times

e Improved algorithm calculating graph handled by AIO

e New operators supported: Baddbmm, sub, slice, max (elementwise), min (elementwise), neg,
index (some cases), split_with_sizes, NumToTensor, Float, Int

e Options custom argument in AlO torch.dynamo backend (see below)
V1.6.0:

e libampere-aio updated to 0.7.0

e PyTorch updated to 2.0.0

¢ Bug fixes and performance enhancements

e New operator supported: LogSoftmax

e Torch.compile() supported (see section about it)

V1.5.2:

e Note: v1.5.2 is a bug fix release to v1.5.1 and v1.5.0. It fixes an issue related to YOLO models.
Please discard v1.5.0 and v1.5.1 you’ve installed.

e libampere-aio updated to 0.6.1
¢ Bug fixes and performance enhancements

e New operators supported: Split, Chunk, Sqrt, Rsqrt, Exp, Log, Zeros_Like, Embedding, Mean

e TorchScript loops are supported.

¢ Improved lifetime handling of Torchscript models
V1.4.0:

e libampere-aio updated to 0.5.0

e Pytorch framework updated to 1.12.1 from 1.11.0

e Support of FP16 ops (automatic mode)

e New operators supported: deconv2d, embedding bag
¢ Improved memory management

e Bug fixes: Instance Norm op fix, thread safety

V1.3.0:
e Binary integer operations support.
e libampere-aio updated to 0.4.0

e New operators supported: Reshape, Squeeze, Unsqueeze, Flatten, PixelShuffle, GroupNorm,
InstanceNorm.

e Using custom compiled OpenBLAS, as Pytorch BLAS backend.
e Bug fixes

V1.2.0:

e libampere-aio updated to 0.3.0

¢ New optimized operators: Gelu, Silu, Softmax, Div, Binary ops between Tensor and Scalar,
Permute, View, Layer Norm, Size, Pow, Tanh, Sigmoid

¢ Improved Concat support
e Graph optimizations

¢ Various bugfixes

V1.1.0:

e Libampere-aio updated to 0.2.1

e Batch Matmul supported (enhancing DLRM performance)
¢ Adaptive Avg Pool supported

o LeakyRelu supported

¢ AIO_NUM_THREADS no longer needed to set Ampere Optimized PyTorch threads, inherits Pytorch
intra-op thread count.

OVERVIEW

Ampere Optimized PyTorch inference acceleration engine is fully integrated with the PyTorch
framework. PyTorch models and software written with the PyTorch API can run as-is, without
modifications.

PYTORCH FRAMEWORK

Python is installed with Ampere Optimized PyTorch and all dependencies. No additional installation
steps are needed.

Versions Compatibility

This release is based on Pytorch 2.0.0 and comes with the compatible Torchvision 0.15.1 installed.

PYTHON

Pytorch 2.0.0 is built for Python 3.10, supporting Ubuntu 22.04. Regarding other Python versions,
please contact your Ampere sales representative. If you are using the software through a third
party, contact their customer support team for help. You can also contact the Al team at
ai-support@amperecomputing.com.

CONFIGURATIONS

Ampere Optimized PyTorch inference engine can be configured by a set of environment variables
for performance and debugging purposes. They can be set in the command line when running
Pytorch models (e.g., AI0O_NUM_THREADS=16 python run.py -p fp32) or set in the shell initialization script.
AIO_PROCESS_MODE

This variable controls whether the Ampere Optimized PyTorch inference engine is used to run the
Pytorch model:

+ 0:disabled.
« 1:enabled (Default).

AIO_CPU_BIND

Enables core binding. If enabled, each Ampere Optimized PyTorch thread will bind itself to a single
core:

+ 0: Core binding disabled.
« 1: Core binding enabled (Default).

AIO_MEM_BIND

Binds memory to NUMA (Non-uniform memory access) node 0. For optimal performance, numactl
(https://linux.die.net/man/8/numactl) is preferred. numactl bind will affect both the Pytorch
framework and the optimized framework buffers, while the optimized framework is unable to affect
buffers allocated by the Pytorch framework:

+ 0: Membind disabled.
+ 1: Membind to node 0 (Default).

AlIO_NUMA_CPUS
Select the cores that Ampere Optimized PyTorch should bind to (if CPU_BIND is enabled):
« Not set: use the first N cores of the machine, excluding hyper-threaded (Default).

« Set: use N first cores from the list of cores for N threads. The list is in space separated, 0-based
number format. For example, selecting cores 0 to 1: AIO_NUMA_CPUS="0 1".

AIO_DEBUG_MODE
Control the verbosity of debug messages:

* 0: No messages

« 1:Errorsonly

« 2: Basic information, warnings, and errors (Default)
« 3: Most messages

+ 4: All messages

QUICKSTART

The following instructions run on Altra/Altra Max Linux machines installed with Docker. When you
are already using a virtual machine pre-installed with the version of Ampere Optimized PyTorch (e.g. on a
cloud service provider) that you need, you can skip the following step of launching Docker container.

Note: This docker image is developed for benchmarking and evaluation purpose, not for deployment into
production environment. We will provide required Debian, RPM and Python packages as needed for your
production deployment.

https://linux.die.net/man/8/numactl
https://linux.die.net/man/8/numactl

Launching Docker Containermas

Pulling Docker Image from Docker Hub repository

S docker pull amperecomputingai/pytorch:1.11.0

Launching Docker Container

S docker run --privileged=true --rm --name pytorch-aio --network host -it amperecomputingai/pytorch:1.11.0

Warning: This user has, by default, root privileges with Docker. Please limit permission according to your security policy.

Running Examples

You can try Ampere Optimized PyTorch by either running the Jupyter Notebook examples or Python
scripts on the CLI level.

To run the Jupyter Notebook QuickStart examples follow the instructions below:

Set AIO_NUM_THREADS to the requested value first.

S export AIO_NUM_THREADS=16; export OMP_NUM_THREADS=16
S cd /workspace/aio-examples/
S bash start_notebook.sh

If you run the Jupyter Notebook Quickstart on a cloud instance, make sure your machine has port
8080 open and on your local device run:

S ssh -N -L 8080:localhost:8080 -1 <ssh_key> your_user@ XxX.XXX.XXX. XXX

Use a browser to point to the URL printed out by the Jupyter Notebook launcher.

You will find Jupyter Notebook examples (examples.ipynb) under the /classification and /object
detection folders.

The examples run through several inference models, visualize results they produce, and present the
performance numbers.

To use CLI-level scripts:

Set AIO_NUM_THREADS to the requested value first.

$ export AI0O_NUM_THREADS=16; export OMP_NUM_THREADS=16
S cd /workspace/aio-examples/

Go to the directory of choice, e.g.
S cd classification/resnet_50_v1
Evaluate the model.

S numactl --physcpubind=0-15 python3 run.py -p fp32

AMPERE OPTIMIZED PYTORCH PROGRAMMING GUIDE

Overview

Ampere Optimized PyTorch is powered by Ampere® Al backend that accelerates Deep Learning (DL)
operations on the Ampere® Altra family of processors. Ampere Optimized PyTorch accelerates DL
operations through model optimization, highly vectorized compute kernels and multi-thread
operations that are automatically tuned to deliver the best latency and throughput on Ampere Altra

processors. It delivers 2-5x gains over alternative backend solutions.

Machine Learning

Computer Matural Language
Vision Processing

Recommender
Systems

Customer Applications
T . b DNNX
i 0 PyTorch VoF N

Model Optimization

Hardware Instruction-Set Mapping

AMPERE.
Altra®

AMPERE.
Atra MAX®

AN

AMPERE.
Ampere One™

Standard Frameworks

L_ Ampere Optimized
Frameworks

Supported Inference Ops

Ampere Optimized Pytorch accelerates the most common Pytorch ops that are used in diverse types
of models. Here is a list of accelerated ops and formats (Note: non-accelerated ops will still run
without a problem, at the original framework operator speed):

Layer FP32 Explicit FP16 | Implicit FP16 Int8 (Automatic | Notes
(Model (Automatic on- on-the-fly)
defined) the-fly [Experimental]

conversion)

Conv2d Y Y Y

Deconv2d Y Y Y Without bias

Conv3d Y Y Y

Deconv3d Y Y Y

Convid Y Y Y

Linear Y Y Y Y

MaxPool2d Y Y

AvgPool2d Y Y

AdaptiveAvgPool2d | Y Y

Relu Y Y Y

Relub Y Y Y

LeakyRelu Y Y Y

Softmax Y Y Y

LogSoftmax Y Y Y

Gelu Y Y Y

Silu Y Y Y

Sigmoid Y Y

Tanh Y Y

Transpose Y Y Y

Permute Y Y Y

BatchNorm Y Y

LayerNorm Y Y Y

GroupNorm Y 2D and 3D

InstanceNorm

2D and 3D

RmsNorm

Add

Int version not
optimized

Mul

Int version not
optimized

Div

Int version not
optimized

Pow

Int version not
optimized

Matmul

MM

BMM

PixelShuffle

View

Reshape

Squeeze

Unsqueeze

Flatten

Contiguous

Size

One dimension
case

EmbeddingBag

Sum mode

Embedding

Split

Chunk

Sgrt

Rsqrt

Exp

Log

Zeros_like

Mean Y
Baddbmm Y
Slice Y
Select Y
Neg Y

Split with sizes

Index Y Limited support

Max Y Elementwise
and reduce

Min Y Elementwise
and reduce

Sum Y

Sub Y

UpsampleNearest2
d

Support only
constant scale
factor and
output size
(cannot change
in model

lifetime)
Sum Y
Hardswish Y
Hardsigmoid Y
Index_add Y
Scatter Y
Expand Y
Where Y nonzero
overload
Zeros Y
TopK Y

10

New custom op: RMSNorm

We added custom operation for RMS norm, since Pytorch does not have fused kernel for it. There are two
methods to use it:

Low level with
Interface it same as in layer_norm however there is extra bool argument which must be set to True to trigger
RMSnorm kernel. Also note that bias must be set to None since RMS does not support bias.

2. High level with torch.nn.RMSNorm module.
class

def True
None None None

Again, interface is like torch.nn.LayerNorm however it does not have bias argument since the op does not
support it.

New operation is much more performant than computing the norm by the series of layers, new op can be
implemented on model level to take advantage of it.

Note that new op does not support backward pass.

New custom op: RoPE

We added custom operation for RoPE, since Pytorch does not have fused kernel for it. There is a new
function:

torch.aio_rope(query_states, position_ids, self.rope_theta)

Now instead of :

rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 =X][..., : x.shape[-1] // 2]
x2 = X[..., x.shape[-1] // 2]
return torch.cat((-x2, x1), dim=-1)

apply_rotary_pos_emb(q, k, cos, sin, position_ids= , unsqueeze_dim=1):
COSs = cos.unsqueeze(unsqueeze_dim)

sin = sin.unsqueeze(unsqueeze_dim)
g_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return g_embed, k_embed

11

query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)

PyTorch JIT Trace

While Pytorch Eager Execution provides excellent model building, programming, and debugging experience,
it is slower than graph execution. So, Torchscript is typically used for inference deployment. In the current
version of Ampere Optimized Pytorch, Torchscript mode is also accelerated.

To use Ampere Optimized Pytorch, conversion of Pytorch module to Torchscript is needed. There are two
ways to convert: torch.jit.script() or torch.jit.trace(input) API calls. See
https://pytorch.org/docs/stable/jit.html for more details. After converting to Torchscript user should call
torch.jit.freeze() to freeze the models and enable model optimizations for inference.

Torch Compile (beta)

Ampere Optimized Pytorch support torch.compile APl introduced in Pytorch 2.0 release. This is a new mode
for optmizing model for infenence. To take advantage of it user must compile the model with AlO backend by
using compiled_model = torch.compile(model, backend="aio”, options={“modelname”: “model”}). It is
important to explicitly select “aio” backend and pass additional parameter named options with “modelname”
field. See https://pytorch.org/get-started/pytorch-2.0/ for more information.

Note: In this release this is a beta feature. Torchscript is likely to be faster than torch.compile.

Implicit FP16 mode

Ampere Optimized PyTorch backend now provides automatic FP16 operator conversion that can boost the
performance of your FP32 model on-the-fly. It automatically performs FP16 conversion and computation for
certain whitelisted operators through regular expression. To take advantage of that, you can set environment
variable.

Sexport AIO_IMPLICIT_FP16_TRANSFORM_FILTER=".*"

This activates automatic FP16 conversion for all supported operators. It is estimated that this has minor
impact on the accuracy of common models. Please contact us if you have any questions about this feature.
Linear merge opt out switch

Quite often in the transformer architecture linear is run on same input tensor with different weights (for
example gkv projection in the attention mechanism) we implemented the optimization which finds such
situations and merges them to one computation. It is faster however it costs extra memory to keep extra
weight tensor. In some cases (large LLMs) it may cause out of memory errors. In such cases user can turn off
the optmization with

Sexport AIO_MERGE_LINEAR=0

Implicit INT8 mixed precision mode (experimental)

Another performance boost can be achieved with implicit model quantization.
It is enabled with:

Sexport AIO_QUANTIZE_INT8_FILTER=".*"

It will replace supported operations with their quantized INT8 versions. Supported operations are
FullyConnected (linear layer in Pytorch), Matmul (different flavours like mm, bmm, etc) and EmbeddingBag. It

12

https://pytorch.org/docs/stable/jit.html
https://pytorch.org/get-started/pytorch-2.0/

worst bests with big models, ale Matmul sometimes introduces the slowdown in that case you should use
different filter like:

Sexport AIO_QUANTIZE_INT8_FILTER="FullyConnected"
The new environmental variable replaced the old AIO_QUANTIZE_INT8=ALL

It is possible to use this mode along with implicit FP16 mode. You can specify both variables to enable that
mode.

If you have fp16 model (for example via mode.half() call), and it works in Pytorch (Pytorch lacks some layers
FP16 support on CPU, so not all models work in FP16 on CPU). You can use int8 mixed precision too.
However, you must specify extra environmental variable:

AlIO_QUANTIZE_INT8_CONVERT_OUT_DTYPE=FP16

This would be preffered solution for better performance because extra FP16->FP32 converstions are
eliminated in that mode.

Threading

Ampere Optimized PyTorch controls the number of Ampere Optimized Pytorch intra_op threads with
torch.set_num_threads(). This controls both the number of threads used for ops delegated to Ampere
Optimized Pytorch as well as the ops running on default CPU backend.

Some default CPU backend ops (non-AlO) also need to set OMP_NUM_THREADS environment variable to
control the intra_op threads.

Programming Tips

In the first two inference passes, Ampere Optimized Pytorch performs a runtime compilation of PyTorch
script and prepares Ampere Optimized Pytorch network. So, the latency of the first two passes is expected to
be longer. Subsequent passes will be accelerated.

Ampere Optimized PyTorch provides much better latency scaling as core count increases, compared to other
platforms. You can easily try the optimal number of cores with the above set_num_threads() function that
can give you the best price / performance, while meeting your latency requirements.

Models are optimized for the shape of the tensors that are used during the compilation phase (see above).
Passing different shape tensors will work but is suboptimal. To get the best performance pad varying shape
tensors when running inference.

If any issues occur, Ampere Al team is ready to help. Typically, the first step is to get more debug logs and
send them to ai-support@amperecomputing.com. Please set environment variable AIO_DEBUG_MODE=4 to
capture low level logs.

Limitations
Ampere Optimized PyTorch does not support dynamic ranks of tensors (different rank in subsequent passes).
Dynamic shapes of Tensors are supported but not recommended, ideally one should pad inputs to the

network to get best performance.

13

mailto:ai-support@amperecomputing.com

We can also provide more in-depth profiling of your model to help enhance performance to meet
your needs.

Ampere Computing® / 4655 Great America Parkway, Suite 601 / Santa Clara, CA 95054 /
www.amperecomputing.com

Ampere Computing, the Ampere Computing logo, Altra, and eMAG are registered trademarks of Ampere Computing.
Arm is a registered trademark of Arm Holdings in the US and/or elsewhere. All other trademarks are the property of their respective owners.

©2022 Ampere Computing. All rights reserved.

AMP 2019-0039

14

http://www.amperecomputing.com/

	RELEASE NOTES
	OVERVIEW
	PYTORCH FRAMEWORK
	Versions Compatibility

	PYTHON
	CONFIGURATIONS
	QUICKSTART
	Launching Docker Containermas
	Pulling Docker Image from Docker Hub repository

	Running Examples

	AMPERE OPTIMIZED PYTORCH PROGRAMMING GUIDE
	Overview
	Supported Inference Ops
	New custom op: RMSNorm
	New custom op: RoPE
	PyTorch JIT Trace
	Torch Compile (beta)
	Implicit FP16 mode
	Linear merge opt out switch
	Implicit INT8 mixed precision mode (experimental)
	Threading
	Programming Tips

