
AMPERE COMPUTING

ONNX RUNTIME
AMPERE® OPTIMIZED

FRAMEWORK
 Documentation

V.1.11.0

1

Table of Contents
RELEASE NOTES ... 2

OVERVIEW... 3

ONNX RUNTIME FRAMEWORK ... 3
Versions Compatibility .. 3

PYTHON .. 3

CONFIGURATIONS ... 4

QUICKSTART .. 6
Launching Docker Container .. 6
Warning: This user has, by default, root privileges with Docker. Please limit permission according to your
security policy. .. 6
Running Examples... 6

AMPERE OPTIMIZED FRAMEWORKS PROGRAMMING GUIDE.. 7

Overview ...7

Supported Inference Ops..8

Threading ..9

Programming Tips ..9

2

RELEASE NOTES

V1.11.0:

• libampere-aio updated to 0.12.0:

o Support of mixed precision mode for FC, Matmuls, EmbeddingBag

v.1.10.0:

• libampere-aio updated to 0.11.0

o Added implicit FP16+int8 mixed precision support. Speed up models like DLRM.

• Misc model speed up:

o Support speed up of operations with multiple outputs.

o Support Slice and Resize ops

v.1.9.0:

• AIO Backend updated to 0.10.0 with performance enhancement.

• Hardsigmoid parameter fixed.

v.1.8.0:

• AIO Backend updated to 0.9.0

o Misc AIO performance enhancements

o Fix an issue that may cause crash when input shapes rapidly change.

v.1.7.0:

• ONNX Runtime updated to 1.14.1

• AIO Backend updated to 0.8.0

o Misc AIO performance enhancements

v.1.6.0:

• AIO Backend updated to 0.7.0

o Misc AIO performance enhancements

o Better performance of Transformer models

v1.5.0:

• AIO Backend updated to 0.6.0

o Misc models speed up

3

o Bug fixes

o Fixed issues with some Transformer models

• ONNX Runtime

o Updated to 1.13.1

o Fixed C++ API

v1.4.0:

• Backend updated to 0.5.1

o Misc models speed up

o Bug fixes

v1.3.0:

• ONNX Runtime updated to v1.11.1.

• Backend updated to 0.4.0

o Misc models speed up

o Bug fixes

v1.2.0:

v1.1.0:

• Updated to use Ampere Optimized ONNX Runtime 0.3.0

o Misc models speed up

OVERVIEW

Ampere Optimized ONNX Runtime inference acceleration engine is fully integrated with the
ONNX Runtime framework. ONNX models and ONNX Runtime software written with the ONNX
Runtime API can run as-is, without modifications.

ONNX RUNTIME FRAMEWORK

Python is installed with Ampere Optimized ONNX Runtime and all dependencies. No additional
installation steps are needed.

Versions Compatibility
This release is based on ONNX Runtime 1.14.1. Please refer to ONNX Runtime version
compatibility documentation, found at ONNX Runtime and ONNX Versioning Guide, to check
the compatibility of models built with older versions of ONNX Runtime.

PYTHON

https://github.com/microsoft/onnxruntime/blob/master/docs/Versioning.md

4

ONNX Runtime 1.14.1 is built for Python 3.10, supporting Ubuntu 22.04. Regarding other
Python versions, contact your Ampere sales representative. If you are using the software
through a third party, contact their customer support team for help. You can also contact the
Ampere AI team at
ai-support@amperecomputing.com.

CONFIGURATIONS

Ampere Optimized ONNX Runtime inference engine can be configured by a set of environment
variables for performance and debugging purposes. They can be set in the command line when
running ONNX models (e.g., AIO_NUM_THREADS=16 python run.py) or set in the shell
initialization script.

mailto:ai-support@amperecomputing.com

5

AIO_PROCESS_MODE

This variable controls whether Ampere Optimized ONNX Runtime inference engine is used to
run the ONNX model:

• 0: disabled.

• 1: enabled (Default).

AIO_CPU_BIND

Enables core binding. If enabled, each Ampere Optimized ONNX Runtime thread will bind itself
to a single core:

• 0: Core binding disabled.

• 1: Core binding enabled (Default).

AIO_MEM_BIND

Binds memory to NUMA (Non-uniform memory access) node 0. For optimal performance,
numactl (https://linux.die.net/man/8/numactl) is preferred. numactl bind will affect both the
ONNX Runtime framework and framework and the optimized framework buffers, while the
optimized framework is unable to affect buffers allocated by the ONNX Runtime framework:

• 0: Membind disabled.

• 1: Membind to node 0 (Default).

AIO_NUMA_CPUS

Select cores that Ampere Optimized ONNX Runtime should bind to (if CPU_BIND is enabled):

• Not set: use the first N cores of the machine, excluding hyper-threaded machines (Default).

• Set: try to use N first cores from the list of cores for N threads. The list is in space-separated,
0-based number format. For example, selecting cores 0 to 1: AIO_NUMA_CPUS="0 1".

AIO_NUM_THREADS

Specifies the number of cores that Ampere Optimized ONNX Runtime should use:

• Not set: use one core (Default).

• "all": use all cores, as specified by AIO_NUMA_CPUS.

• N: use N cores.

https://linux.die.net/man/8/numactl

6

AIO_DEBUG_MODE

Control verbosity of debug messages:

• 0: No messages

• 1: Errors only

• 2: Basic information, warnings, and errors (Default)

• 3: Most messages

• 4: All messages

QUICKSTART

The following instructions run on Altra/Altra Max Linux machines installed with Docker. When
you are already using a virtual machine pre-installed with the version of Ampere Optimized
ONNX Runtime (e.g. on a cloud service provider) that you need, you can skip the following step
of launching Docker container.

Note: This docker image is developed for benchmarking and evaluation purpose, not for
deployment into production environment. We will provide required Debian, RPM and Python
packages as needed for your production deployment.

Launching Docker Container

Pulling Docker Image from repository
$ docker pull amperecomputingai/onnxruntime:1.10.0

Launching Docker Container
$docker run --privileged=true --rm --name onnxrt-aio --network host -it amperecomputingai/onnxruntime:1.10.0

Warning: This user has, by default, root privileges with Docker. Please limit permission according to your security
policy.

Running Examples
You can try Ampere Optimized ONNX Runtime by either running the Jupyter Notebook
examples or Python scripts on the CLI level.

To run the Jupyter Notebook QuickStart examples follow the instructions below:

Set AIO_NUM_THREADS to the requested value first.

$ export AIO_NUM_THREADS=16; export OMP_NUM_THREADS=16
$ cd /workspace/aio-examples/
$ bash download_models.sh
$ bash start_notebook.sh

If you run the Jupyter Notebook Quickstart on a cloud instance, make sure your machine has
port 8080 open and on your local device run:

$ ssh -N -L 8080:localhost:8080 -I <ssh_key> your_user@xxx.xxx.xxx.xxx

7

Use a browser to point to the URL printed out by the Jupyter Notebook launcher.

You will find the Jupyter Notebook examples (examples.ipynb) under the /classification and
/object detection folders.

The examples run through several inference models, visualize results they produce and present
the performance numbers.

To use CLI-level scripts:
Set AIO_NUM_THREADS to the requested value first.

$ export AIO_NUM_THREADS=16; export OMP_NUM_THREADS=16
$ cd /workspace/aio-examples/
$ bash download_models.sh
$ pip install torch

Go to the directory of choice, e.g.,

$ cd classification/resnet_50_v1.5

Evaluate the model.

$ python3 run.py -m resnet_50_v1.5_fp32.onnx -p fp32

AMPERE OPTIMIZED FRAMEWORKS PROGRAMMING GUIDE

Overview

Ampere Optimized ONNX Runtime is powered by Ampere AIO backend that accelerates Deep

Learning (DL) operations on Ampere Altra family processors. AIO accelerates DL operations

through model optimization, highly vectorized compute kernels and multi-thread operations that

are automatically tuned to deliver the best latency and throughput on Ampere Altra processors. It

delivers 2-5x gains over alternative backend solutions.

8

Supported Inference Ops

Ampere Optimized ONNX Runtime accelerates most common ONNX Runtime ops that are used

in various types of models. Here is a list of accelerated ops and formats (Note: non-accelerated

ops will still run without problem, at the original framework operator speed):

 FP32 FP16 Remarks

Conv Y Y

MatMul Y Y Input B constant only

MaxPool Y Y

GlobalMaxPool Y Y

AveragePool Y Y

GlobalAveragePool Y Y

Relu Y Y

LeakyRelu Y Y

BatchNormalization Y Y

Softmax Y Y axis == the last dimension only

Concat Y Y

Add Y Y

Sub Y Y

Pow Y Y

Mul Y Y

Div Y Y

Sqrt Y Y

Exp Y Y

Tanh Y Y

9

Log Y Y

Clip Y Y Min == 0.0 && max == 6.0 only

Squeeze Y N FP32 or INT32 input only

Unsqueeze Y N FP32 or INT32 input only

Sum

Transpose Y N FP32 or INT32 input only

Perm necessary

Scatter Y N FP32 or INT32 input only

LRN

Gemm Y Y Input C num dims < 2 only

Input C constant only

transA == 0 only

Cast Y Y

Reshape Y N Shape input constant only

FP32 or INT32 only

Shape Y Y

Gather Y N FP32 or INT32 input only

Ampere AI continues to expand the coverage of ONNX Runtime ops. If your model has any op

that is not listed in the table or custom ops that need acceleration, please contact ai-

support@amperecomputing.com.

Threading

Ampere Optimized ONNX Runtime controls the number of intra_op threads of AIO with

onnxruntime.SessionOptions().intra_op_num_threads. This controls both the number of threads

used for ops delegated to AIO as well as the ops running on default CPU backend.

Some default CPU backend ops (non-AIO) also need to set OMP_NUM_THREADS

environment variable to control the intra_op threads.

To correctly switch between Ampere Optimized ONNX Runtime and ONNX Runtime thread
pools we recommend setting following environmental variables to ensure best performance:

OMP_WAIT_POLICY=ACTIVE
GOMP_SPINCOUNT=10000
KMP_BLOCKTIME=1

Programming Tips

• In the first inference pass, AIO performs runtime compilation of ONNX graphs. So, the

latency of the first pass is expected to be longer. Subsequent passes will be accelerated.

mailto:ai-support@amperecomputing.com
mailto:ai-support@amperecomputing.com

10

• Ampere Optimized ONNX Runtime provides much better latency scaling as core count

increase, comparing to other platforms. You can easily try the optimal number of cores with the

above intra_op_num_threads configurations that can give you the best price / performance, while

meeting your latency requirements.

• (Experimental): Ampere Optimized ONNX Runtime backend now provides
automatic FP16 operator conversion that can boost the performance of your FP32
model on-the-fly. It automatically performs FP16 conversion and computation for
certain whitelisted operators through regular expression. To take advantage of that,
you can set environment variable.

o $export AIO_IMPLICIT_FP16_TRANSFORM_FILTER=”.*”

o This activates automatic FP16 conversion for all supported operators.

o It is estimated that this has very little impact to accuracy of common
models. Please contact us if you have any question about this feature.

• If any issues occur, Ampere AI team is ready to help. Typically, the first step is to get more

debug logs and send it to ai-support@amperecomputing.com. Please set environment variable

AIO_DEBUG_MODE=5 to capture low level logs.

We can also provide more in-depth profiling of your model to help enhancing performance to

meet your needs.

Ampere Computing® / 4655 Great America Parkway, Suite 601 / Santa Clara, CA 95054 /
www.amperecomputing.com
Ampere Computing, the Ampere Computing logo, Altra, and eMAG are registered trademarks of Ampere Computing.

Arm is a registered trademark of Arm Holdings in the US and/or elsewhere. All other trademarks are the property of their respective owners.

©2022 Ampere Computing. All rights reserved.

AMP 2019-0039

mailto:ai-support@amperecomputing.com
http://www.amperecomputing.com/

	RELEASE NOTES
	OVERVIEW
	ONNX RUNTIME FRAMEWORK
	Versions Compatibility

	Python
	CONFIGURATIONS
	QUICKSTART
	Launching Docker Container
	Pulling Docker Image from repository
	Launching Docker Container

	Warning: This user has, by default, root privileges with Docker. Please limit permission according to your security policy.
	Running Examples

	AMPERE OPTIMIZED FRAMEWORKS PROGRAMMING GUIDE
	Overview
	Supported Inference Ops
	Threading
	Programming Tips

